
Authentication
Juan Pablo Sáenz

Introduzione alle Applicazioni Web

Goals

§ Understand the concept of sessions in web applications

§ Learn how Flask-Login manages user authentication

§ Implement login, logout, and user session persistence

§ Protect routes to restrict access to authenticated users

§ Handle user loading and session management properly

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 2

Sessions

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 3

HTTP is stateless

§ Each request is independent and does not retain
information from previous interactions

However, web applications often need to maintain
information across multiple requests

§ In an online shop, when we add a book to the
shopping cart, we expect it to stay there

§ As we browse other pages, our shopping cart
(«state») should be remembered

Sessions

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 4

A session is a temporary and interactive exchange of data between two or more parties (e.g., devices)

It involves one or more messages sent in each direction

Typically, one party maintains the application state during the session

A session has a defined beginning and ends at a later point

Session-Based Authentication

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 5

1. The user fills out a form with a username and
password in the client application

2. The client validates the input and, if valid, sends
it to the server through a POST request

3. The server receives the request, checks if the
user exists, and verifies the password using
cryptographic hashes

4. If the user is not found or the password does not
match, the server responds with an error
message like "Wrong username and/or password"

https://www.criipto.com/blog/session-token-based-authentication

Session-Based Authentication

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 6

5. If the credentials are correct, the server
generates a session ID

6. The session ID, along with some user information
retrieved from the database, is stored in the
server’s session storage

7. The server sends back an HTTP response
containing a cookie with the session ID

8. The browser receives the cookie, stores it
automatically, and the web application handles
the response (e.g., displaying
a "Welcome!" message)

https://www.criipto.com/blog/session-token-based-authentication

Sessions: Session ID

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 7

A unique identifier assigned by the server to
maintain a session with the client

§ It allows the server to recognize the client across
multiple HTTP requests as authenticated

After authentication, the server sends a session ID to
the client

The client sends the session ID back to the server
with every request during the session

§ Stored on the client side

§ Sent automatically with each request, typically
via cookies🍪

https://levelup.gitconnected.com/understanding-web-authentication-session-based-
authentication-vs-json-web-tokens-jwts-11871084f3ec

Sessions: Cookies 🍪

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 8

A small piece of information stored by the browser
in its internal cookie storage

§ It allows the browser to retain information across
different requests and sessions (e.g., session IDs,
preferences, tracking)

The browser automatically saves cookies received
from the server

Cookies are automatically sent back to the server
with every request to the same domain and
matching path

⚠ Sensitive information should never be stored in
cookies!

Sessions: Session ID and Cookies 🍪

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 9

A Session ID is just a piece of data

§ A unique identifier that the server uses to
recognize a user across multiple HTTP requests

A Cookie is a storage mechanism in the browser

§ A way to store small pieces of data like the
Session ID

The Session ID is typically stored inside a cookie

https://blog.bytebytego.com/p/ep90-how-do-sql-joins-work

Sessions: Cookie attributes🍪

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 10

name (mandatory): the name of the cookie

§ Example: SessionID

value (mandatory): the value stored in the cookie

§ Example: 94$KKDEC3343KCQ1!

secure: If set, the cookie is sent only over HTTPS

httpOnly: If set, the cookie cannot be accessed
via JavaScript

expiration date: Specifies when the cookie
should expire

https://blog.bytebytego.com/p/ep90-how-do-sql-joins-work

📍Authentication: where are we?

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 11

Authentication and Authorization

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 12

Authentication: Verifies who you are (identity)

§ Typically done using credentials (e.g., username
and password)

§ Enables a personalized user experience

Authorization: Determines what you are allowed to
access

§ Depends on the authenticated identity

§ Grants permission to access resources, based on
roles

👉 Used in conjunction to protect access to a system

Authentication and Authorization

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 13

Developing authentication and authorization mechanisms

§ Is complicated, time-consuming, and prone to errors

§ May require integration with third-party systems (e.g., Google, Facebook login)

§ Involves both client and server

§ Requires understanding several new concepts

💡 Best Approach: Follow best practices and standardized processes

Authentication in Flask

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 14

Flask-Login is an extension that manages user
authentication and session handling in Flask applications

🔗 https://flask-
login.readthedocs.io/en/latest/

Uses sessions to keep users logged in

Handles login, logout, and 'remember me' functionality🔑

Stores the active user’s ID in the Flask session💾

Easily log users in and out🚪

Restrict access to views based on login status 🚫

pip install flask-login

https://flask-login.readthedocs.io/en/latest/
https://flask-login.readthedocs.io/en/latest/

Flask-Login Setting Up

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 15

Flask-Login uses a LoginManager

§ It defines how to load a user from an ID

§ Where to redirect users when they need to log in

The SECRET_KEY is used to sign session cookies, making sure
data sent by the client has not been modified

from flask import Flask

from flask_login import

LoginManager

app = Flask(__name__)

app.config["SECRET_KEY"] =

"arbitrary string"

login_manager = LoginManager()

login_manager.init_app(app)

Flask-Login Setting Up

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 16

We need to provide Flask-Login, at least, two things:

User model

§ Represents what a user is in the app

§ You decide what information to store for each user

§ Can be based on any database system

user_loader callback

§ Tells Flask-Login how to load a user from the session

Flask-Login: User model

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 17

The User model must implement the following properties for Flask-Login to work

§ is_authenticated: Returns True if the user is logged in

§ is_active: Returns True if the user’s account is active (e.g., not suspended or deactivated)

§ is_anonymous: Returns True if the user is not logged in

§ get_id(): Returns a unique str identifier for the user (used by the user_loader)

Flask-Login: User model

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 18

UserMixin provides default implementations for
the methods that Flask-Login requires

We can inherit from UserMixin

from flask_login import UserMixin

class User(UserMixin):

def __init__(self, id, name,

surname, email, password):

self.id = id

self.name = name

self.surname = surname

self.email = email

self.password = password

Flask-Login: user_loader

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 19

We need to tell Flask-Login how to load a user from
a Flask request and from its session

To do this, we define a user_loader callback @login_manager.user_loader
def load_user(user_id):

db_user = dao.get_user_by_id(user_id)

user = User(id=db_user["id"],

name=db_user["nome"],

surname=db_user["cognome"],
email=db_user["email"],

password=db_user["password"],)

return user

Flask-Login: login_user()

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 20

Logs a user in: we should pass the actual User object
to this method

Returns True if the log in attempt succeeds, and
False if it fails

from flask_login import login_user

@app.route("/login", methods=["POST"])
def login():

user_form = request.form.to_dict()

(...)

new = User(id=user_form["id"],
name=user_form["nome"],
surname=user_form["cognome"],
email=user_form["email"],
password=user_form["password"],)

login_user(new)

return redirect(url_for("profile"))

Flask-Login: login_required

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 21

Views that require users to be logged in can be
decorated with the login_required decorator

from flask_login import login_required

(...)

@app.route("/profilo")

@login_required
def profile():

return render_template("profile.html")

Flask-Login: logout_user()

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 22

Logs out a user: any cookies for the session will be
cleaned up

from flask_login import logout_user

(...)

@app.route("/logout")

@login_required
def logout():

logout_user()

return redirect(url_for('home'))

Flask-Login: current_user

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 23

We can access the logged-in user with
the current_user proxy, which is
available in every template # app.py

from flask_login import current_user
For instance, anywhere in the code:

post['id_utente'] = int(current_user.id)

<!-- templates/home.html -->

{% if current_user.is_authenticated %}

Hi {{ current_user.name }}!

{% endif %}

Let's see it in practice

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 24

Storing passwords in the Server

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 25

👉 Never store plain text passwords (e.g., in the database)

§ Always hash passwords before storing them

§ Hashing is a one-way function, ensuring passwords cannot
be retrieved from their hash

werkzeug.security is a Python library that we can use

🔗

https://werkzeug.palletsprojects.com/en/stab
le/utils/

pip install werkzeug

from werkzeug.security import
generate_password_hash,
check_password_hash

(…)

new_user = {
"name": name,
"surname": surname,
"email": email,
"password":
generate_password_hash(password,
method='sha256’)
}

https://werkzeug.palletsprojects.com/en/stable/utils/
https://werkzeug.palletsprojects.com/en/stable/utils/

Let's see it in practice

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 26

Licenza

9 maggio 2025 Introduzione alle Applicazioni Web (01DXU) 27

§ These slides are distributed under a Creative Commons license “Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0)”

§ You are free to:
§ Share — copy and redistribute the material in any medium or format
§ Adapt — remix, transform, and build upon the material
§ The licensor cannot revoke these freedoms as long as you follow the license terms.

§ Under the following terms:
§ Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses
you or your use.

§ NonCommercial — You may not use the material for commercial purposes.
§ ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
§ No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
§ https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

